On Rings of Analytic Functions

نویسنده

  • LIPMAN BERS
چکیده

Let D be a domain in the complex plane (Riemann sphere) and R(D) the totality of one-valued regular analytic functions defined in D. With the usual definitions of addition and multiplication R(D) becomes a commutative ring (in fact, a domain of integrity). A oneto-one conformai transformation f =0(z) of D onto a domain A induces an isomorphism ƒ—>ƒ* between R(D) and R(A):f(z) =ƒ*[(2)]. An anti-conformal transformation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Rings of Measurable and Continuous Functions

This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

A note on the socle of certain types of f-rings

For any reduced commutative $f$-ring with identity and bounded inversion, we show that a condition which is obviously necessary for the socle of the ring to coincide with the socle of its bounded part, is actually also sufficient. The condition is that every minimal ideal of the ring consist entirely of bounded elements. It is not too stringent, and is satisfied, for instance, by rings of ...

متن کامل

More on Rings on Rings by Ian Richards

This note is a sequel to the paper On rings on rings by Anatole Beck [ l ] . The problem we consider (originally proposed by Paul Rosenbloom) is that of characterizing the parameter p for the annulus Q = {1< | s| <p} in terms of the ring R of bounded analytic functions nn this annulus. Beck's solution involves properties of univalent functions, and although the subset of univalent functions in ...

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007